
Translation Manager

including a new Text-based property in translations:

Out-of-the-box, Translation Manager will recognise all core of text-based properties

and a large number of the popular package based properties available for Umbraco.

However, if you have developed your own custom properties or installed a package

that Translation Manager doesn’t recognise you can extend the list of text properties

it understands by adding them to the ​translations.config​ file within your site’s

Config​ folder.

Text / Html only Properties

The Mappers / Text config allows for the configuration of simple property editors

that only store a simple text string or HTML as their value.

 <mappers>
 <text>
 <text>My.Boxed.Content,My.Sample.Content</text>
 <html>My.Boxed.Content</html>
 </text>
 </mappers>

In this example to property editors ​My.Boxed.Content​ and ​My.Sample.Content

both contain a text-based value and will be interpreted as text by Translation

Manager, here ​My.BoxedContent​ also contains HTML (i.e is a rich text control) so

Translation Manager will use the config to treat the text as HTML during translation.

Complex Properties

If you have a property editor that stores its data in a more complex way you can still

extend Translation manager to parse and recognise the text within the data. For this,

there are two options

1: Using the Custom JSON Mapper

If your property editor stores it's values within a JSON object - you can use the config

file to tell Translation Manager how to interpret your properties data.

If for example, you have a property that stores its data in the following format

{
“Key”, “some-key-value”,
“Title”, “my property title”,
“Content”, “<p>some rich text content</p>”

}

Then you could use the config options (below) to define the ​Title​ and ​Content

fields as text-based.

Within the mappers section of the config file you can define this using the <custom>

or <grid> config nodes (see below for details of how the grid naming works)

<mappers>
 <custom>
 <config alias="My.Custom.Property">
 <properties>
 <property name="Title" alias="Umbraco.Textbox" />
 <property name="Content" alias="Umbraco.TinyMCEv3" />
 </properties>
 </config>
 </custom>
</mappers>

This config tells translation manager to treat all ​My.Custom,Property​ values as

JSON and extract the title and content values when creating and importing

translations.

2: Write a custom ValueMapper

The config file should let you configure most non-complex property editors without

the need to resort to code, however if you are storing complex data or nesting other

property editors within your own editor then you can write your own mapper to with

these values

A class Implementing the ​IValueMapper​ interface, will be discovered by translation

manager and used where the editor aliases match that of a given property editor.

We have some example code to help you should you need to write your own mapper:

● Example Stacked Content Value Mapper​ (Included in Translation Manager)

● Example for RJP.MultiURL Picker

Help! I don’t know what format the control is storing

data in?

If you didn’t develop the property editor, then it’s highly likely you don’t know what

format it is storing its data in.

The quickest way to find out what format things are stored in is to look in the

umbraco.config​ file within the ​app_data ​folder.

This file is the Umbraco cache on disk, and you should not edit it - but you can open

it up and quickly search it for a property name you know is using the required data

type and you will be able to see the format of the data you are looking for.

If your value is storing something other then text you will likely see a piece of JSON

looking something like this:

"value": {
 “key": "Main Translation set thing",
 "borderColor": "#EEFFEE",
 "definition": "<p>Some text will need translating</p>"
},

In this case you would use this to build a config similar to the one in the first part of

this document.

https://gist.github.com/KevinJump/a982a7cb7234b9ed4c2f41fdb708d7c4
https://gist.github.com/anonymous/8dddfa36480ab36e50d457600db33127

Property editor naming

For the most part, when looking for property editors, Translation Manager will use

the Property Editor Alias set within the property editor - this is for example

Umbraco.TextString ​for textboxes, and​ Jumoo.StyledText​ for the Styled

Textbox property editor.

When you have a custom property editor you should use your property editor alias

(alias in the package.manifest file) as the value in the configuration. This can also be

seen within Umbraco when looking at the data type in the developer section

Grid Names

When looking for custom editors within the Grid property editor, translation

manager will the folder the view is stored in, so for example if your grid editor

contains the following config :

"gridEditors": [{
 "name": "Boxed Content",
 "alias": "BoxedContent",
 "view": "~/App_Plugins/BoxedContent/Editor/editor.html",
 "render":
"~/App_Plugins/BoxedContent/Website/boxedcontent.cshtml",
 "icon": "icon-pushpin"
}],

The editor alias for translation manager will be ​BoxedContent ​- which is the alias

name, this is the name you should use for all configuration and custom value

mappers.

